ISSN 1600-5368

Bis(trimethylphenylammonium) hexa[bromido/chlorido(0.792/0.208)]stannate(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 February 2010; accepted 22 February 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.021; wR factor = 0.052; data-to-parameter ratio = 22.4.

In the title molecular salt, $[C_6H_5(CH_3)_3N]_2[SnBr_{4.75}Cl_{1.25}]$, the Sn^{IV} atom (site symmetry $\overline{1}$) adopts an octahedral coordination geometry. The Br and Cl atoms are disordered over three sites in 0.7415 (13):0.2585 (14), 0.8514 (14):0.1486 (14) and 0.7821 (14):0.2179 (14) ratios.

Related literature

For the crystal structures of other ammonium hexabromidostannates(IV): see: Al-Far & Ali (2007); Al-Far *et al.* (2009); Ali *et al.* (2007); Howie *et al.* (2009).

Experimental

Crystal data $(C_9H_{14}N)_2[SnBr_{4.75}Cl_{1.25}]$ $M_r = 815.00$

Monoclinic, $P2_1/c$ a = 8.8003 (1) Å metal-organic compounds

Mo $K\alpha$ radiation $\mu = 8.45 \text{ mm}^{-1}$

 $0.30 \times 0.30 \times 0.20$ mm

T = 293 K

b = 10.6362 (2) Åc = 14.2869 (2) Å $\beta = 104.433 (1)^{\circ}$ $V = 1295.07 (3) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART APEX	12
diffractometer	29
Absorption correction: multi-scan	25
(SADABS; Sheldrick, 1996)	R
$T_{\min} = 0.186, \ T_{\max} = 0.283$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.052$ S = 1.012974 reflections 133 parameters 12094 measured reflections 2974 independent reflections 2507 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

5 restraints H-atom parameters constrained $\Delta\rho_{\rm max}=0.38$ e Å^{-3} $\Delta\rho_{\rm min}=-0.58$ e Å^{-3}

Table 1 Selected bond lengths (Å).

Sn1-Br1	2.5630 (3)	Sn1-Br3	2.5874 (3)
Sn1-Br2	2.5886 (3)		

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5336).

References

- Al-Far, R. & Ali, B. F. (2007). Acta Cryst. C63, m137-m139.
- Al-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. E65, m583–m584. Ali, B. F., Al-Far, R. & Ng, S. W. (2007). Acta Cryst. E63, m2102–m2103.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). *Acta Cryst.* E65, m1562.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, m353 [doi:10.1107/S160053681000680X]

Bis(trimethylphenylammonium) hexa[bromido/chlorido(0.792/0.208)]stannate(IV)

K. M. Lo and S. W. Ng

Experimental

Tribenzyltin chloride (0.34 g, 1 mmol) and trimethylphenylammonium tribromide (0.38 g, 1 mmol) were heated in ethanol (50 ml) for 1 hour. After filtering of the reaction mixture, yellow blocks of (I) were obtained upon slow evaporation of the filtrate. The crystal structure indicated that all the organic groups bonded to tin in the reactant were cleaved by the tribromide anion.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.93–0.96 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times $U_{eq}(C)$. The initial refinement that assumed the halogens were only bromine atoms led to a difference Fourier with a large peak near Sn1 and a deep hole near Br1. The *R*-index was 0.0367.

The three halogen atoms were then refined as a mixture of chlorine and bromine. For each site, the displacement factor of the bromine and chlorine occupants were restrained to be identical. The refinement gave nearly 2.375 bromine and 0.625 chlorine atoms, and the difference Fourier was diffuse.

Figures

Fig. 1. The molecular structure of (I) at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The bromine atoms are disordered with respect to the chlorine atoms.

Bis(trimethylphenylammonium) hexa[bromido/chlorido(0.792/0.208)]stannate(IV)

Crystal data	
(C ₉ H ₁₄ N) ₂ [SnBr _{4.75} Cl _{1.25}]	F(000) = 775
$M_r = 815.00$	$D_{\rm x} = 2.090 { m Mg} { m m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4823 reflections
<i>a</i> = 8.8003 (1) Å	$\theta = 2.4 - 28.2^{\circ}$
b = 10.6362 (2) Å	$\mu = 8.45 \text{ mm}^{-1}$
c = 14.2869 (2) Å	T = 293 K
$\beta = 104.433 (1)^{\circ}$	Block, yellow
$V = 1295.07 (3) \text{ Å}^3$	$0.30 \times 0.30 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Bruker SMART APEX diffractometer	2974 independent reflections
Radiation source: fine-focus sealed tube	2507 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.186, T_{\max} = 0.283$	$k = -13 \rightarrow 13$
12094 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.052$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0273P)^2 + 0.3311P]$ where $P = (F_o^2 + 2F_c^2)/3$
2974 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
133 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
5 restraints	$\Delta \rho_{\rm min} = -0.58 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sn1	0.5000	0.5000	0.5000	0.02940 (7)	
Br1	0.79909 (3)	0.50477 (3)	0.52754 (2)	0.04523 (11)	0.7415 (13)
Br2	0.50568 (4)	0.71415 (3)	0.58689 (2)	0.04665 (11)	0.8514 (14)
Br3	0.53087 (4)	0.38474 (3)	0.66315 (2)	0.04326 (11)	0.7821 (14)
Cl1	0.79909 (3)	0.50477 (3)	0.52754 (2)	0.04523 (11)	0.2585 (14)
C12	0.50568 (4)	0.71415 (3)	0.58689 (2)	0.04665 (11)	0.1486 (14)
C13	0.53087 (4)	0.38474 (3)	0.66315 (2)	0.04326 (11)	0.2179 (14)
N1	0.8193 (2)	0.0359 (2)	0.70182 (15)	0.0404 (5)	
C1	0.9413 (3)	0.0799 (2)	0.65257 (17)	0.0354 (5)	
C2	0.8999 (3)	0.1456 (3)	0.5678 (2)	0.0586 (8)	
H2	0.7949	0.1610	0.5382	0.070*	
C3	1.0162 (4)	0.1887 (3)	0.5271 (3)	0.0689 (10)	
H3	0.9879	0.2330	0.4692	0.083*	
C4	1.1700 (4)	0.1687 (3)	0.5682 (2)	0.0564 (8)	
H4	1.2466	0.1978	0.5390	0.068*	
C5	1.2101 (4)	0.1053 (3)	0.6533 (2)	0.0636 (9)	
H5	1.3155	0.0919	0.6831	0.076*	
C6	1.0965 (3)	0.0603 (3)	0.6963 (2)	0.0566 (8)	

supplementary materials

H6	1.1253	0.0170	0.7546	0.068*
C7	0.8529 (4)	-0.0962 (3)	0.7393 (3)	0.0619 (9)
H7A	0.8527	-0.1518	0.6864	0.093*
H7B	0.7735	-0.1221	0.7708	0.093*
H7C	0.9537	-0.0988	0.7847	0.093*
C8	0.8202 (4)	0.1222 (3)	0.7851 (2)	0.0636 (9)
H8A	0.9203	0.1176	0.8310	0.095*
H8B	0.7393	0.0973	0.8156	0.095*
H8C	0.8015	0.2069	0.7618	0.095*
C9	0.6576 (3)	0.0366 (3)	0.6359 (2)	0.0567 (8)
H9A	0.6272	0.1215	0.6175	0.085*
H9B	0.5852	0.0008	0.6689	0.085*
H9C	0.6569	-0.0122	0.5793	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.02718 (11)	0.02958 (12)	0.03066 (12)	-0.00216 (9)	0.00577 (8)	-0.00056 (9)
Br1	0.02788 (16)	0.0596 (2)	0.04703 (19)	-0.00311 (13)	0.00721 (13)	0.00024 (14)
Br2	0.05446 (19)	0.03536 (16)	0.04899 (19)	-0.00321 (13)	0.01072 (14)	-0.00974 (12)
Br3	0.04800 (18)	0.04521 (18)	0.03699 (17)	0.00217 (13)	0.01141 (13)	0.00745 (13)
Cl1	0.02788 (16)	0.0596 (2)	0.04703 (19)	-0.00311 (13)	0.00721 (13)	0.00024 (14)
Cl2	0.05446 (19)	0.03536 (16)	0.04899 (19)	-0.00321 (13)	0.01072 (14)	-0.00974 (12)
C13	0.04800 (18)	0.04521 (18)	0.03699 (17)	0.00217 (13)	0.01141 (13)	0.00745 (13)
N1	0.0381 (11)	0.0413 (12)	0.0425 (12)	0.0010 (9)	0.0116 (9)	0.0063 (10)
C1	0.0365 (13)	0.0337 (12)	0.0367 (13)	-0.0019 (10)	0.0107 (10)	-0.0008 (10)
C2	0.0461 (16)	0.064 (2)	0.0621 (19)	0.0077 (15)	0.0071 (14)	0.0280 (16)
C3	0.075 (2)	0.071 (2)	0.064 (2)	-0.0009 (18)	0.0238 (18)	0.0325 (18)
C4	0.0603 (19)	0.0526 (18)	0.064 (2)	-0.0082 (15)	0.0306 (16)	0.0018 (15)
C5	0.0394 (15)	0.086 (2)	0.068 (2)	0.0031 (16)	0.0184 (15)	0.0090 (18)
C6	0.0422 (15)	0.081 (2)	0.0456 (16)	0.0065 (15)	0.0101 (13)	0.0173 (16)
C7	0.0571 (18)	0.0496 (18)	0.082 (2)	0.0043 (14)	0.0235 (17)	0.0281 (16)
C8	0.069 (2)	0.077 (2)	0.0519 (18)	0.0022 (17)	0.0294 (16)	-0.0079 (16)
C9	0.0356 (14)	0.0623 (19)	0.068 (2)	-0.0023 (13)	0.0049 (14)	0.0087 (16)

Geometric parameters (Å, °)

Sn1—Cl1 ⁱ	2.5630 (3)	C3—C4	1.352 (4)
Sn1—Br1 ⁱ	2.5630 (3)	С3—Н3	0.9300
Sn1—Br1	2.5630 (3)	C4—C5	1.357 (5)
Sn1—Cl3 ⁱ	2.5874 (3)	C4—H4	0.9300
Sn1—Br3 ⁱ	2.5874 (3)	C5—C6	1.383 (4)
Sn1—Br2	2.5886 (3)	С5—Н5	0.9300
Sn1—Br3	2.5874 (3)	С6—Н6	0.9300
Sn1—Br2 ⁱ	2.5886 (3)	С7—Н7А	0.9600
Sn1—Cl2 ⁱ	2.5886 (3)	С7—Н7В	0.9600
N1—C8	1.501 (4)	С7—Н7С	0.9600

supplementary materials

N1—C1	1.498 (3)	C8—H8A	0.9600
N1—C9	1.498 (3)	C8—H8B	0.9600
N1—C7	1.506 (4)	C8—H8C	0.9600
C1—C6	1.368 (4)	С9—Н9А	0.9600
C1—C2	1.367 (4)	С9—Н9В	0.9600
C2—C3	1.375 (4)	С9—Н9С	0.9600
C2—H2	0.9300		
Cl1 ¹ —Sn1—Br1 ¹	0.00 (2)	C8—N1—C7	109.1 (2)
Cl1 ¹ —Sn1—Br1	180.000 (15)	C1—N1—C7	111.0 (2)
Br1 ⁱ —Sn1—Br1	180.000 (15)	C9—N1—C7	107.4 (2)
Cl1 ⁱ —Sn1—Cl3 ⁱ	89.879 (10)	C6—C1—C2	119.8 (2)
Br1 ⁱ —Sn1—Cl3 ⁱ	89.879 (10)	C6—C1—N1	119.2 (2)
Br1—Sn1—Cl3 ⁱ	90.121 (10)	C2—C1—N1	120.8 (2)
Cl1 ⁱ —Sn1—Br3 ⁱ	89.879 (10)	C1—C2—C3	118.9 (3)
Br1 ⁱ —Sn1—Br3 ⁱ	89.879 (10)	C1—C2—H2	120.6
Br1—Sn1—Br3 ⁱ	90.121 (10)	С3—С2—Н2	120.6
Cl3 ⁱ —Sn1—Br3 ⁱ	0.000 (6)	C4—C3—C2	122.3 (3)
Cl1 ⁱ —Sn1—Br3	90.121 (10)	С4—С3—Н3	118.9
Br1 ⁱ —Sn1—Br3	90.121 (10)	С2—С3—Н3	118.9
Br1—Sn1—Br3	89.879 (10)	C3—C4—C5	118.4 (3)
Cl3 ⁱ —Sn1—Br3	180.0	C3—C4—H4	120.8
Br3 ⁱ —Sn1—Br3	180.0	C5—C4—H4	120.8
Cl1 ⁱ —Sn1—Br2	89.277 (10)	C4—C5—C6	121.0 (3)
Br1 ⁱ —Sn1—Br2	89.277 (10)	C4—C5—H5	119.5
Br1—Sn1—Br2	90.723 (10)	С6—С5—Н5	119.5
Cl3 ⁱ —Sn1—Br2	90.014 (10)	C1—C6—C5	119.6 (3)
Br3 ⁱ —Sn1—Br2	90.014 (10)	С1—С6—Н6	120.2
Br3—Sn1—Br2	89.986 (10)	С5—С6—Н6	120.2
Cl1 ⁱ —Sn1—Br2 ⁱ	90.723 (10)	N1—C7—H7A	109.5
Br1 ⁱ —Sn1—Br2 ⁱ	90.723 (10)	N1—C7—H7B	109.5
Br1—Sn1—Br2 ⁱ	89.277 (10)	H7A—C7—H7B	109.5
Cl3 ⁱ —Sn1—Br2 ⁱ	89.986 (10)	N1—C7—H7C	109.5
Br3 ⁱ —Sn1—Br2 ⁱ	89.986 (10)	Н7А—С7—Н7С	109.5
Br3—Sn1—Br2 ⁱ	90.014 (10)	Н7В—С7—Н7С	109.5
Br2—Sn1—Br2 ⁱ	180.0	N1—C8—H8A	109.5
Cl1 ⁱ —Sn1—Cl2 ⁱ	90.723 (10)	N1—C8—H8B	109.5
Br1 ⁱ —Sn1—Cl2 ⁱ	90.723 (10)	H8A—C8—H8B	109.5
Br1—Sn1—Cl2 ⁱ	89.277 (10)	N1—C8—H8C	109.5
Cl3 ⁱ —Sn1—Cl2 ⁱ	89.986 (10)	H8A—C8—H8C	109.5
Br3 ⁱ —Sn1—Cl2 ⁱ	89.986 (10)	H8B—C8—H8C	109.5
Br3—Sn1—Cl2 ⁱ	90.014 (10)	N1—C9—H9A	109.5
Br2—Sn1—Cl2 ⁱ	180.0	N1—C9—H9B	109.5

Br2 ⁱ —Sn1—Cl2 ⁱ	0.000 (6)	Н9А—С9—Н9В	109.5
C8—N1—C1	108.6 (2)	N1—C9—H9C	109.5
C8—N1—C9	108.1 (2)	Н9А—С9—Н9С	109.5
C1—N1—C9	112.5 (2)	Н9В—С9—Н9С	109.5
C8—N1—C1—C6	73.7 (3)	N1—C1—C2—C3	177.3 (3)
C9—N1—C1—C6	-166.6 (3)	C1—C2—C3—C4	-0.3 (6)
C7—N1—C1—C6	-46.2 (4)	C2—C3—C4—C5	-0.8 (6)
C8—N1—C1—C2	-102.3 (3)	C3—C4—C5—C6	1.0 (5)
C9—N1—C1—C2	17.4 (4)	C2-C1-C6-C5	-1.2 (5)
C7—N1—C1—C2	137.8 (3)	N1-C1-C6-C5	-177.3 (3)
C6—C1—C2—C3	1.4 (5)	C4—C5—C6—C1	0.0 (5)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Fig. 1

